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Two different kinetic calculations have been employed to model electron behavior in a low-pressure
inductively coupled plasma (ICP) in order to investigate the processes governing the formation of the
electron distribution function (EDF). One approach involves a numerical “propagator” treatment of
time-resolved electron motion in five-dimensional phase space (two spatial and three velocity coordi-
nates) based on the “convected scheme” (CS). The other one, referred to as the “nonlocal” approach,
uses the difference between momentum and energy relaxation rates of electrons to simplify the Boltz-
mann equation. For the majority of electrons, the nonlocal approach reduces the kinetic equation
for the isotropic part of the EDF to a form that exhibits a resemblance to that for homogeneous
plasmas. Both calculations incorporate the principal physical effects in a collisional ICP: electron
heating by an inductive electric field and nonlocal electron kinetics in which the electrons rapidly lose
momentum but travel long distances before suffering a substantial energy loss in collisions. The col-
lision processes that are important in the discharge include quasielastic and inelastic collisions with
heavy particles and electron-electron interactions. A comparison of the results of the two methods
validates the assumptions employed in the nonlocal approach for the considered range of discharge
conditions. To good accuracy the EDF of the majority of the electrons in the ICP is found to be
solely a function of the total (kinetic plus potential) electron energy and to be largely independent
of the spatial coordinates. The extent to which this is true, and the circumstances under which it is
true, are a major focus of this paper. In a rare gas ICP, as a result of Coulomb collisions between
electrons, a Maxwell-Boltzmann distribution is typically found in the elastic energy range. The CS
calculations demonstrate that trapped electrons can carry a substantial circulating current within

the plasma that exceeds the current of free electrons to the walls.

PACS number(s): 52.80.—s, 52.65.—y
I. INTRODUCTION

A considerable interest in low-temperature plasmas has
recently been generated by numerous modern applica-
tions to materials processing. Novel “high-efficiency”
plasma sources have been introduced which are sustained
by alternating electromagnetic fields at relatively low gas
pressures of 1-100 mTorr and ionization degrees up to
1072 [1]. Discharge modeling is important for under-
standing physical processes in the plasma and in source
design. An accurate simulation requires, among other
things, a precise knowledge of the electron distribution
function (EDF) which defines the rates of plasma gener-
ation and various chemical reactions. These rates are not
constant in space or time, nor simply related to the lo-
cal fields or mean electron energy. Thus any model which
hopes to do better than describe the qualitative behavior
of the plasma must contain a rigorous kinetic treatment
of the electron gas.

In the gas-discharge community attempts are still
made to obtain the principal qualitative features of gas
discharges within the fluid approach; kinetic analysis is
used in this case only to calculate the values of trans-
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port coefficients and the rates of plasma chemical reac-
tions. However, numerous nonlocal effects have been ob-
served [2] which cannot be even qualitatively described
by the fluid approach. Numerical gas-discharge model-
ing has evolved to include development of hybrid (fluid-
particle) Monte Carlo models [3]. Statistical or particle-
in-cell (PIC)-Monte Carlo methods have been introduced
to gas-discharge physics from collisionless fusion plasmas
and astrophysics [4]. A nonstatistical, propagator treat-
ment of particle kinetics (the so-called convected scheme)
demonstrated advantages compared to statistical meth-
ods [5]. Some of the numerical methods have been de-
veloped into reliable computer codes, capable of detailed
simulations of the discharge plasma. However, they are
often time consuming especially when applied to mul-
tidimensional plasma sources. Efficient numerical tools
for the kinetic treatment of electrons and reliable ap-
proximate approaches to the solution of the Boltzmann
equation are necessary.

In this paper we compare the results of two different
kinetic calculations in application to inductively coupled
plasmas (ICP’s). One is a numerical “propagator” treat-
ment of time-resolved electron motion in five-dimensional
phase space (two spatial and three velocity coordinates)
using the convected scheme (CS) [5-8]. Another, re-
ferred to as a “nonlocal approach” [2,9-12] assumes small
anisotropy of the electron distribution function (EDF)
and uses the total energy of electrons as an independent
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variable in the spatially inhomogeneous Boltzmann equa-
tion. Both these methods have already been used in dif-
ferent gas-discharge problems. This is the first paper to
our knowledge where the CS was applied to description of
electron kinetics in a two-dimensional plasma. The goal
of the paper is to investigate the physical processes gov-
erning the electron behavior in a collisional ICP and the
approximations which can be used to simplify the treat-
ment of nonlocal electron kinetics at low gas pressures.

Self-consistent kinetic modeling of a two-dimensional
ICP is a formidable numerical task. Though attempts
have recently been published to this end [10,12,13], in
our present study we consider the electron kinetics for
given distributions of electrostatic and alternating elec-
tric fields. The calculations are, therefore, not fully self-
consistent. The essential ICP physics incorporated in the
models includes spatially inhomogeneous electron heat-
ing by the inductive electric field and various collision
processes. Discharge conditions are such that the elec-
trons rapidly lose momentum but diffuse throughout the
whole discharge volume before suffering a substantial en-
ergy loss due to collisions. The nonlocal approach has
proved to be insightful, yet computationally very effi-
cient in application to different gas-discharge problems
under these conditions [2]. The validity of the approx-
imations employed in this approach, involving assump-
tions of small anisotropy and time independence of the
principal part of the EDF, as well as the appropriate-
ness of spatial averaging of the Boltzmann equation for
calculation of the trapped-electron DF in an ICP, are ex-
amined using the CS. It is found that the EDF is largely
independent of position. The extent to which this is true,
and the circumstances under which it is true, are a major
focus of this paper.

The ICP is a weakly ionized (the ionization degree is
about 1073), bounded, electrodeless plasma sustained by
an inductive electric field which results in electron heat-
ing. The plasma is created by electron impact ionization.
The effective loss rate of electrons and ions is determined
by their escape to the walls. The inductive electric field
in the ICP is intrinsically nonuniform even in the absence
of plasma shielding. The alternating electron current is
closed within the plasma volume and does not form an
oscillating rf sheath as in capacitively coupled plasmas.
The plasma density in an ICP is typically higher than
that in a capacitively coupled plasma. The thickness of
the space charge sheath near the wall is negligible com-
pared to the chamber dimensions. The majority of the
electrons are trapped in the plasma by the electrostatic
field which is established to equalize the electron and ion
dc fluxes. The mechanism of electron heating in the ICP
is a subject of intense research. At very low gas pres-
sures, in a regime with rare collisions, collisionless heating
of electrons may prevail over collisional (Ohmic) heating
[14-16]. The present paper deals with the pressure range
where collisional heating dominates. Even under these
conditions some collisionless features of the electron be-
havior have been found in the CS calculations: for in-
stance, a substantial circulating current exists within the
plasma. Though the ionization degree is relatively low,
the Coulomb collisions among electrons are shown to be
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important in maintaining the EDF and the ionization
rate in a rare gas ICP.

In the next section we describe the formulation of the
problem, with emphasis on the analytic technique. The
nonlocal approach allows the problem to be cast in a form
such that results for electron kinetics in a homogeneous
plasma may be applied to the highly inhomogeneous ICP.
The CS was described in detail elsewhere; some aspects
of the CS used here are summarized in the Appendix.
Section III presents the results of the calculations.

II. FORMULATION OF THE PROBLEM

We consider a weakly ionized low-pressure ICP sus-
tained by an inductive electric field from a planar coil.
The electrons and ions created by electron impact tend to
diffuse out of the plasma, and, since electrons are faster, a
slight positive space charge develops in the volume. The
potential of the space charge field forms a potential well
which traps the majority of the electrons in the plasma
to assure the balance of the ionization rate and the loss
rate. For the considered range of discharge conditions,
the motion of the electrons in such a potential well is colli-
sion dominated. For ionization degrees typical of ICP’s,
electron collisions with neutrals are typically more fre-
quent than collisions between the charged particles. Col-
lisions with neutrals can be unambiguously divided into
quasielastic and essentially inelastic by comparing the en-
ergy lost in a single collision with the energy scale of the
EDF decay, Ae = [8In(F')/0w]~! [2]. In quasielastic col-
lisions (which include elastic collisions and excitation of
molecular vibrations and rotations) the electron momen-
tum undergoes a substantial change, while the relative
change of the electron kinetic energy w is small compared
to Ae. The energy loss can be described by a parame-
ter § < 1 which is the average fraction of energy lost in
a single collision. Essentially inelastic collisions include
those with an energy loss substantially greater than Ae
(excitation of electron levels and ionization). For most
gases, the total frequency of inelastic collisions, v*, is less
than the momentum transfer frequency v. Thus an elec-
tron undergoes many elastic collisions before an inelastic
collision occurs. As a result, the electron energy relax-
ation length may exceed the discharge dimensions even
if the electron mean free path for momentum transfer is
small compared to those.

In our present study of the electron kinetics in the
ICP, imposed spatial profiles of the electrostatic potential
©(p,z) and the azimuthal component of the inductive
rf electric fields, Eg(p, z), are used. The spatial profile
of Eg(p,z) was obtained as a solution of the Maxwell
equations for a given plasma density, and is shown in
Fig. 1. The electrostatic potential is assumed to be of
the form

o(2, ) =<Po{1 - [1 —(Z—L"' - 1)1
[
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FIG. 1. The profile of the electrostatic potential and the

azimuthal component of the rf inductive field F¢ used in sim-
ulations.

We varied k1 and k2 to examine the influence of the po-
tential profile on the EDF shape. The wall potential g
with respect to the peak plasma potential (taken to be
zero) is set up to ensure the ionization balance. The
procedure for calculation of ¢o in the two methods is
described below; epo must in any case exceed the first
excitation level of the atoms e*.

The two methods of handling the Boltzmann equation
will now be briefly reviewed.

A. Convected scheme

The convected scheme calculates the time-resolved par-
ticle density in the phase space. It employs a propagator
to update the particle numbers in numerical “cells.” This
propagator is designed to satisfy Liouville’s theorem and
to exactly locally in phase space conserve such quantities
as particle density, energy or momentum, and angular
momentum in the numerical implementation of the parti-
cle kinetics. The CS distribution extends throughout the
entire phase space, with essentially the same amount of
information obtained for each numerical cell. As a result
the CS method is unlike the Monte Carlo method which
follows discrete particles and exhibits statistical “noise”
which is problematic in the regions where the particle
density (in phase space) is low. For many cells of the
phase space mesh the expected number of Monte Carlo
simulation particles in the cell will actually be much less
than 1. The use of “weighting schemes” to mitigate this
problem ultimately leads to algorithms such as the CS
or EPIC [17], which are based on the method of charac-
teristics. Eastwood [17] formally wrote a general repre-
sentation of 1D methods of characteristics. When imple-
mented numerically, unlike the CS he (i) used discrete
particles, evaluating overlap integrals by sampling at the
particle positions; (ii) recommended the particles be uni-
formly spaced at the new time level; and (iii) suggested
that in more than 1D the variables be treated as sepa-
rate. By contrast, in the CS we compute where the initial
cell goes using conservation laws locally in phase space,
and using the positions of the cell’s spatial faces which
stay in contact with their neighbors. The CS can be
regarded as a method of characteristics with various de-

sirable properties. The sheath regions and the tail of the
distribution are well resolved by the CS. Elimination of
various sources of numerical errors and implementation
of the CS for different geometries were discussed previ-
ously [5-8].

The convected scheme used here provides an EDF as a
function of six independent variables (p, z,v,, v, M, ).
Here (p, z) are cylindrical coordinates, v, is the z compo-
nent of velocity, v, is the magnitude of the component
of velocity perpendicular to z, M = psin¢, is the “re-
duced” angular momentum or moment arm about the
z axis, where ¢, is the angle between the velocity v,
and the unit radial vector p, measured clockwise with
¢, = 0 being radially outward, and ¢ is time. If the
actual angular momentum about the z axis is £,, then
M = L,/(mv), where m is the particle mass. In pre-
vious work, calculations were described using the vari-
able sets (2,v,,v1) [6,7] and (p,v,,v,, M) [8] as well as
(z,v,p) [18] where v is the total speed and pu = v, /v.
This is the first convected scheme calculation using the
full set of variables (p, z,v,,v, , M), although the exten-
sions to previous work are straightforward. Some modifi-
cations to allow for the inductive electric field and minor
changes in the collision operator are described in the Ap-
pendix. The parameters of the computational “mesh”
used in the CS in the present work are given in Table
I. The mesh is somewhat coarse with respect to the two
spatial coordinates, while the mesh in (v,,v ) is very
fine. The number of M cells at each radius p depends on
p and is equal to 47, where ¢ is the p index, so the total
number of M cells is SI7°, 4i = 2N,(N, + 1) where N,
is the number of p cells.

The EDF f(p,z,v1,v,,M,t) is defined to be the
number of particles in a particular cell at time t di-
vided by the appropriate volume of the cell in phase
space 2mpdpdzv, dv, dv,d¢, where d¢, is related to dM.
The isotropic or spherically symmetric part of the EDF
Fo(p, z,v,t) is constructed as an average over angles in
the velocity space, i.e., over M (or ¢,) and over u. The
nonspherical component Fi(p,z,v,t) is therefore given
by Fi(p,z,v,t) = F — Fy(p, z,v,t). The time-averaged
part of Fp can be constructed using a sum over the time
steps in a rf cycle divided by the number of time steps

TABLE I. Parameters for CS simulation.
Quantity Value
number of z cells 14
number of p cells 11
number of v, cells 71
number of v, cells 36
number of M cells 528
total number of cells 9195494
max (2mv?) 80 eV
K1 4
K2 4
max (n) 2 x 10" cm ™3
power deposited 100 W
gas pressure 20 mTorr
gas temperature 300 K
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per cycle.

For the CS calculations the peak electron density and
the profiles of the rf inductive field Eg(p, 2) and electro-
static potential ¢(p,z) were specified externally in this
non-self-consistent case. Both Ey(p, z) and ¢(p, z) were
scaled by an initial guess. As the simulation progressed,
¢(p, z) was rescaled (that is, po was varied) so that ion-
ization and electron wall loss balanced. Once ¢(p, z) was
found, Ey was rescaled so that the power deposited into
the plasma reached the desired value. The run was then
restarted and iterated until the desired power deposition
was obtained, the peak electron density was the specified
peak density, and ionization was balanced by electron
wall losses. In previous work using the CS in simpler dis-
charges, the calculations were fully self-consistent and so
the plasma density and all electric fields were calculated
by the CS.

B. Nonlocal approach

The other method used here, which is referred to as a
nonlocal approach, has also been described in detail in
earlier work [2,9-12]. It uses the total electron energy as
an independent variable in the spatially inhomogeneous
Boltzmann equation in the two-term approximation. For
the majority of trapped electrons in an ICP the Boltz-
mann equation is reduced to only one variable (total en-
ergy). This simplification, which is primarily attractive
for multidimensional plasmas, provides a useful link to
electron kinetics in a homogeneous plasma. It enables
one to use the results of studies of the local Boltzmann
equation, in particular in regard to the way the colli-
sion cross sections control the shape of the EDF in a rf
plasma. A simplified model of electron kinetics such as is
provided by the nonlocal approach is essential in order to
interpret the results of the “exact” CS calculation. We
shall discuss the extent to which the assumptions em-
ployed in the nonlocal approach are validated by the CS.
The equations used in the nonlocal approach are the sub-
ject of the rest of this section.

The key assumptions in this part of the work are (i)
the EDF is almost isotropic; the two-term approximation
is applicable in the collisional regime when the electron
mean free path for momentum transfer is much less than
the discharge dimensions; (ii) the isotropic part of the
EDF is nearly time independent; (iii) the total energy of
electrons ¢ (kinetic plus potential) is an appropriate inde-
pendent variable for use in the calculations; the principal
part of the EDF for slow trapped electrons is a function
solely of € and does not depend explicitly on the coordi-
nates.

These assumptions are based on the difference between
the rates of momentum and energy relaxation of elec-
trons. The collision processes which are important for
the ICP include electron collisions with heavy particles
and Coulomb interactions among charged particles. For
the majority of electrons in an ICP, the momentum re-
laxation is governed primarily by elastic collisions with
heavy particles. In elastic collisions, the electron momen-
tum undergoes a substantial change, but not the elec-
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tron energy. In Coulomb collisions, both the energy and
the momentum of the electrons are changed only slightly.
The fractions of electron energy and momentum lost in
a collision with another electron are of the same order.
The energy change is considerably smaller in collisions
with ions and can be neglected. The smallness of the
anisotropy of the EDF is a result of the difference be-
tween the rate of the momentum change in collisions and
the rate of the energy change in any process.

The nonlocal approach makes use of the difference be-
tween the characteristic time scales for the evolution of
the spherically symmetric (isotropic) and the nonspher-
ical (anisotropic) parts of the EDF. The time evolution
of the anisotropic part F) is governed by the transport
frequency v which describes the momentum relaxation
rate. The time evolution of the isotropic part Fp is rel-
atively slow compared to the time evolution of Fj. It
is characterized by an energy loss frequency v,.(v) which
substantially depends on electron energy. For quasielas-
tic collisions v, = év. If the rf driving frequency w > v,
then the Fy component is modulated only slightly with
time. An average of the isotropic part Fy over the rf pe-
riod results in a steady component fo. It can be seen that
the correction Fy — fo varies in time with a frequency 2w,
while the amplitude of the Fy modulation is of the order
of v /w.

In deriving these conclusions we did not assume that
the nonspherical component was small. The only im-
portant consideration was that the time scales are quite
distinct: v > v.. The conclusion about the small modu-
lation of the spherical component Fj is therefore rather
general and must be valid in the free-flight regime of ICP
operation (rare collisions) as well. Since the spherical
component defines the scalar characteristics of the elec-
tron ensemble, such as the electron density, these are
practically time independent at w > v.. As a conse-
quence of v, < v, the assumption (iii) above is expected
to be valid also in the free-flight regime.

In the collisional regime, when the electron mean free
path for momentum transfer A = v/v is small compared
to the discharge dimensions, the traditional two-term
spherical harmonic expansion for the EDF is applicable.
The nonspherical part of the EDF, F;, which is respon-
sible for vector quantities such as electron fluxes, breaks
into a steady-state part

FY=_)\Vf, (2)
and an oscillatory part

eEg(p, z)v. 8fo

Pl
! V2 +w? O

cos (wt — a) sin ¢, (3)

which is proportional to the electric field strength Eq [2].
Here v, is the magnitude of the velocity component in
the plane orthogonal to the z axis, ¢, is the angle be-
tween the velocity v, and the radial vector which defines
the particle position, and o = arctan(w/v) is the phase
of oscillations in Fyj with respect to the field oscillations.
At w > v, the phase shift is & ~ 7/2, while in the op-
posite case the phase shift is small, a < 1. Since the
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field Ey is directed along ¢, = 7/2 or 37 /2, it does not
affect the electrons moving outward (¢, = 0) or mov-
ing inward (¢, = 7). To within an order of magnitude,
the amplitude of the EDF modulation is proportional to
the ratio of the directed azimuthal electron velocity to
the characteristic thermal velocity of the electron mo-
tion. The expression (3) is valid if the amplitude of the
EDF modulation is small compared to unity. It may not
be applicable in the immediate vicinity of the coil where
Ey is high.

An equation for the time-averaged isotropic part of the
EDF can be written in the form [2,11,12]

dfo

e

1o}
Vr : (vDrVrfO) + %v{(DE + Dee)

+(Veo + veN)fo} — v (v) fo(e) —vl. (4)

The left hand side of Eq. (4) describes the electron dif-
fusion in configuration space with the diffusion coeffi-
cient D, = vA/3 and electron motion along the “en-
ergy axis” due to energy loss (transfer) in collisions and
heating. Both quasielastic collisions with neutrals and
Coulomb interactions among electrons are written in the
Fokker-Planck form in Eq. (4). Coulomb interactions
result in electron diffusion along the energy axis with
the diffusion coefficient D.. and dynamic friction with
“kinematic” velocity V.. which are proportional to the
electron-electron collision frequency vee [11]. The energy
loss in quasielastic collisions leads to dynamic friction
with velocity V.xy = wév where § is the average fraction
of the energy lost in a single collision (for elastic collisions
4 is a double ratio of electron to ion mass). The quan-
tity Dg (defined below) is the energy diffusion coefficient
due to the rf field. The right hand side of (4) describes
inelastic collisions. Inelastic collisions are experienced
by electrons with kinetic energy exceeding the inelastic
threshold €*. An inelastic collision usually causes almost
complete loss of the electron’s energy. The specific form
of the source term I in Eq. (4), which describes the ar-
rival of electrons as a result of inelastic collisions and ion-
ization, can be found elsewhere [2,11,12]. The electron
heating by the rf field results in diffusive motion of elec-
trons along the “energy axis” with diffusion coefficient
[2,9-12]
eEg(p, 2)A\)2v3

Da(p,e) = ERR LY (%)
It should be noted that for collisional (Ohmic) heating
the diffusion coefficient Dg is a function of the local rf
field.

Equation (4) describes the energy relaxation of elec-
trons due to collisions. In quasielastic collisions an elec-
tron loses a small fraction § of its energy. Thus the en-
ergy relaxation length in quasielastic collisions, Ar, is
equal to the net electron displacement after 1/§ colli-
sions. Since the electron performs a random walk with
the step size A, the length Ay is equal to Ar = A/+/8. The
EDF relaxation due to interelectron interactions occurs
during the time v_!. Thus the EDF relaxation length

due to interelectron interactions, Aee = A4/V/Vee, corre-
sponds to a distance an electron travels during the time
v.l. Inelastic collisions of fast electrons occur during
the time 1/v*. The net electron displacement during this
time, A* = A4/v/v*, corresponds to the energy relaxation
length for inelastic collisions. Since the frequences v,
and v* as well as the quantity § are functions of electron
kinetic energy, the energy relaxation lengths are substan-
tially different for electrons with different energies.

The numerical solution of Eq. (4) with appropriate ICP
boundary conditions has been performed in Ref. [11] for
trapped and free electrons with total energy of the order
of and above the excitation threshold €*. The EDF of
free electrons strongly depends on the coordinates. For
trapped electrons with € =~ £*, almost the entire discharge
volume is available since the potential drop in the plasma
is less than &*.

For the majority of electrons in the ICP, a further sim-
plification of Eq. (4) is possible. Under nonlocal condi-
tions, the spatial electron diffusion [described by the first
term in Eq. (4)] occurs faster than electron displacement
along the energy axis (described by other terms). For
those electrons whose total energy does not exceed the
depth of the potential well, € < ego, the time-average
isotropic part of the EDF, f,, can be expressed in the
form [2]

fO(pazve)=f(?(a)+f(:)l(pyza5) (6)

where the main part fJ(¢) is a solution of the ap-
propriately spatially averaged Boltzmann equation, and
f3(p, z,€) is a small correction, fi < fQ. The EDF f
provides zero dc particle flux at each € since the mobility
and diffusion dc fluxes calculated from fQ(g) cancel each
other at every e. However, the energy fluxes calculated
with fJ are compensated only on average over the vol-
ume of the discharge. When f3(p, 2,€) is neglected, the
dc flux of electrons is only due to those electrons (with
€ > epo) which are capable of escaping the discharge.
The EDF of these free electrons depends explicitly on
the coordinates [11]. The small correction term f} gives
a nonzero dc flux of trapped electrons. Since electrons
with different total energies diffuse almost independently,
the net dc electron fluxes at different € can flow in differ-
ent and even in opposite directions, as illustrated below
by the CS calculations. Such problems where different
parts of the distribution behave quite differently from
each other can evidently be handled only kinetically and
cannot be obtained in the framework of a fluid treatment
of the electron gas.

Under nonlocal conditions, the entire available dis-
charge volume has a role in the formation of f2(¢). Since
electrons have time to diffuse throughout the entire avail-
able discharge volume before they significantly change
their total energy, the principal part of the EDF is de-
fined by the spatially averaged equation [2,9-12]

52 {wpe) + D) B+ (o) + V) 13

= (w*(v))fo(e) — (vI). (7)
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The angular brackets () designate integration over the
volume of the discharge accessible to electrons with given
€. For instance,

2w
vDEg) = —/ vDEgpdpdz, 8
( ) V(e) Jse) ®)
where S(e) is the available discharge area bounded by the
curve ¢ = —ed(z,p) and V(g) is the available discharge
volume.

According to Eq. (7), the shape of f(g) is governed
by the integral balance of electron heating and energy
loss (transfer) in various collisions. The effective heat-
ing rate is determined by the spatially averaged value of
Dg(p,z,¢) and thus depends on the spatial profiles of
both the rf and electrostatic fields as well as on the func-
tional dependence of the transport collision frequency v
on the electron speed.

Equation (7) coincides formally with the Boltzmann
equation in a homogeneous plasma. However, all the
necessary spatial information is contained in the coefli-
cients in this equation and is retained in the nonlocal
EDF fJ(e) [4,9-12]. A formal solution of Eq. (7) can
be obtained considering D.. and V.. to be known func-
tions. The solution in the elastic energy range which
corresponds to zero electron flux along the energy axis is

o _ _ ¢ de'
f=cen|- [ 5205 ©)
where

_ (vDEp) + (vDee)
(WVee) + (vVen)

is the characteristic scale of the energy decay and C is a
constant to be determined by imposing the normalization
condition. The inelastic collisions lead to the appearance
of an electron flux along the energy axis. Accounting
for this flux results in an EDF which still has an impor-
tant exponential part given by Eq. (9). If the Coulomb
collisions are not very frequent, the EDF in the inelastic
energy range decreases much more rapidly than fJ in the
elastic range, given in Eq. (9).

The total number of inelastic collisions and electron
escapes to the walls per unit time can be expressed using
the spatially averaged kinetic equation (7). Integrating
(7) over e from &* to infinity, one obtains in the black-wall
approximation [2]

Aeg (10)

dfo

(11)

e*

The first term @ in Eq. (11) is the total number of in-
elastic collisions, and the second Z is the total number
of electron escapes to the walls. The latter, Z, can be
expressed as the flux along the energy axis at epo [2]:

Z = —(UDE>%

4 (12)

€po

The ionization rate is in general the sum of the rates of
direct ionization, stepwise ionization, and ionization in
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collisions of metastable atoms. The number of stepwise
ionization events can be related to the total number of
inelastic collisions, using an ionization efficiency coeffi-
cient g < 1 [2]. The total number of ionizations must be
equal to the total number of electron escapes to the wall.
Thus Egs. (11) and (12) result in a relation between EDF
derivatives at epo and €*:

1Y dfo
(”5)9?

which defines the wall potential. The latter depends
on the mechanism of ionization through the efficiency of
stepwise ionization g. The quantity g can be expressed
using the rate of stepwise ionization, the probability for
the escape of resonance radiation, and the rates at which
metastable atoms diffuse to the walls [2]. The wall po-
tential was calculated from Eq. (13) for g = 1/3.

_ o
de
€po

; (13)

e*

III. RESULTS FOR AN ICP IN A RARE GAS

In this section we present the results obtained by the
two methods for an ICP in a rare gas. To examine the
role of different collision processes on the EDF shape, we
consider both argon and helium at a pressure of p = 20
mTorr. The discharge is sustained by an inductive rf field
of frequency w = 85 x 108 s~1 (13.56 MHz) from a planar
coil placed on a dielectric window on top of a cylindrical
chamber of radius R = 12 cm and height L = 14 cm. The
azimuthal component of the inductive electric field Ejy is
obtained as a solution of the Maxwell equations for given
coil current and plasma density, assuming the walls and
bottom of the chamber are metallic [10-12]. The spatial
profile of Ey is shown in Fig. 1 together with the shape
of the electrostatic potential ¢. The influence of the rf
magnetic field on electron kinetics is neglected since it is
not believed to be important for the collisional (Ohmic)
electron heating examined here. The parameters of the
collisional low-pressure ICP we consider in the present
work correspond to the higher range of pressures in which
ICP’s are employed for material processing applications.
The comparison of the results of the two methods allows
one to gain insight into the physical processes govern-
ing the EDF formation in the discharge and examine the
approximations which can be used to simplify the treat-
ment of nonlocal electron kinetics in a low-pressure ICP.

A. Results of the nonlocal approach

The EDF in a low-pressure ICP was calculated using
the nonlocal approach for different plasma densities. The
approximations used for collision cross sections are shown
in Table II. The CS uses a very detailed set of data de-
scribed in Refs. [6-8]. Table III shows typical frequen-
cies and lengths in argon and helium at pressure p =20
mTorr and for an ionization degree of 107%. It is seen
that the momentum transfer frequency v dominates over
the total frequency of inelastic collisions v* and over the
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TABLE II. Approximations for electron-atom collision
frequencies used in the nonlocal approach: transport fre-
quency v = vop(w/e*); total frequency of inelastic collisions
v* = ygp(w/e* —1); fraction of energy loss in elastic collisions

§ =2m/M.

10*6
Atom (109 —1) (109 —1) (eV)
Ar ‘ 17 ‘ 1.7 ’ 3/2 \ 11.2 \ 46
He ' 2.5 ‘ 0.84 l 0 21.2’ 0.68

frequency of Coulomb interactions among electrons vee.
The energy relaxation lengths in different types of col-
lisions correspond to net distances traveled during the
time between subsequent collisions. The values of energy
relaxation lengths in quasielastic collisions Ay = A§~1/2,
in interelectron interactions Ace = A(/Vee)?/?, and in in-
elastic collisions A\* = A(v/v*)'/? are given in Table IIL
It is seen that the energy relaxation lengths exceed the
discharge dimensions, i.e., the assumptions employed in
the nonlocal approach are appropriate for the considered
range of discharge conditions.

We first consider the EDF formation in the absence
of electron-electron interactions. In this case, the EDF
shape is governed by the energy gain from the field and
energy loss in collisions. For a rectangular potential well
[« > 1 in Eq. (1)], the spatial averaging (8) results in

e2yed/?

3/2
woe) = (2) Gy Ee). a9

The electron heating is therefore governed by an effec-
tive field Ecss = 1/(E3(p, 2)). The characteristic length
Ag = €*/eE.55 corresponds to the distance over which
an electron would gain energy ¢* in a homogeneous elec-
tric field of strength E.fs in the absence of energy loss
in elastic collisions [2]. For Ag <« Ar, the energy loss
in elastic collisions is negligible; the energy balance of
electrons is governed by the field and the energy loss in
inelastic collisions. In this case, the electrons gain en-
ergy in the elastic energy range € < ¢ [8] and lose their
energy in the inelastic energy range € > ¢ [8]. The solu-
tion of (7) in the elastic energy range, which corresponds
to constant electron flux along the energy axis, is

TABLE III

w=85x10"s"
and the inelastic frequency for w = 1.2¢".
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C/ (vDE) (15)

where the upper limit €¢ is defined by matching to the
EDF tail. At A* < Ag the relative number of electrons in
the inelastic energy range is small, and the upper limit in
the integral (15) is €0 = €*. The shape of the EDF (15) is
determined mainly by the functional dependence of the
electron momentum transfer frequency on the electron
energy. For an increasing function v(v), the EDF has
a concave curvature on a logarithmic plot versus energy
and is enriched at both low and high energies compared
to the Maxwellian distribution. The EDF may have a sin-
gularity at low energies due to two circumstances. First,
the solution (15), which corresponds to conservation of
the electron flux, diverges at low energies as ¢ ~'/2 for a
constant diffusion coefficient Dg (as in helium). Second,
if v(e) decreases with decreasing of energy (as in argon),
the low-energy electrons absorb energy from a rf field less
effectively than the high-energy electrons. They tend to
accumulate at zero energy, which causes a strong peak
at ¢ = 0. In the ICP, the joint effects of strong nonuni-
formity of the inductive electric field together with the
presence of the ambipolar field additionally contribute to
accumulation of electrons at low energies. The spatially
averaged energy diffusion coefficient [Eq. (5)] vanishes
at low energies for two reasons: (i) it is reduced by an
additional factor because of the decrease in the area S(¢)
accessible to low-energy electrons, and (ii) being trapped
by the ambipolar electric field, slow electrons (with small
€) cannot even reach the region of high inductive field
where the heating takes place.

In the presence of Coulomb collisions (at higher plasma
density) the low-energy electrons can interact with other
electrons of higher energy and in so doing climb up in
energy. The Coulomb interactions lead therefore to the
heating of slow electrons and cooling of the fast electrons.
They mitigate the accumulation of slow electrons near
e = 0 and can drastically reduce the peak of the EDF at
€ = 0. Figure 2 illustrates the influence of interelectron
collisions on the EDF shape in the energy range below the
wall potential. The EDF’s shown are obtained as numer-
ical solutions of Eq. (7) for three different plasma densi-
ties with effective values of the inductive field E.f7=0.5
V/cm in argon and 2 V/cm in helium. It is seen that
the Coulomb interactions result in significant changes of
the EDF. A similar behavior has been found in a homo-
geneous rf plasma of rare gases at reduced gas pressures

Characteristic frequencies and lengths for electron kinetics in an ICP in argon
and helium at a pressure p=20 mTorr and a plasma density n = 10'° cm
!, Elastic and Coulomb collision frequencies are for an electron energy w = 0.5¢”,

-3

. rf field frequency

v v Vee AT AT
Atom (107 s71) (107 s71) (104 _1) (10* s71) (cm) (cm) (cm) (cm)
Ar | 13 | 34 | 0.36 28 | o075 | 146 | 74 | 4
He | 5 | 1.7 | 1.35 112 | 386 | 235 | 258 | 21
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Argon

0 0.5 1
total energy (¢/e*)

Helium

0] 0.5 1
total energy (e/€*)

FIG. 2. The time-averaged isotropic part of the EDF fo in
argon and helium found from the nonlocal model. The curves
fo/n are shown as functions of the total energy, at different
plasma densities: 7 x 10%(1),7 x 10°(2), and 5 x 10'°(3) cm™2.

[19].

The changes of the EDF induced by interelectron col-
lisions have a significant influence on the electron char-
acteristic energy Ae, a key parameter that determines
the profile of the ambipolar potential in the plasma. If
the EDF is non-Maxwellian as a function of total energy,
i.e., Ae depends on €, the EDF as a function of kinetic
energy changes with position and the mean energy of the
electrons is spatially nonuniform [20]. In rare gases, at
plasma parameters typical of an ICP, the EDF in the
elastic energy range is found to be Maxwellian. The
characteristic energy Ae does not depend on & in this
case, and the electron temperature T, = Ac is spatially
uniform. It should be emphasized that the temperature
is determined by the integral balance of electron heat-
ing and cooling rather than local field values and thus
influenced by the entire profiles of the rf field and the
electrostatic field in the plasma.

B. Results of the CS simulation

Both Ar and He discharges were simulated using the
CS. Table IV summarizes the results. Experimental re-
sults for an Ar discharge are also given for comparison.
The wall potential and average energy obtained agree at
the 10% level. In both simulations, the total power de-
posited into the plasma from the rf inductive field Ey was
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TABLE IV. Summary of CS simulation for Ar and He
ICP discharges.

Quantity | He | Ar | Ar Expt.
w0 (V) 34 16.9 16.7
bulk (3mv?) (eV) 7.3 4.2 3.9
max(Ey) (V/cm) 4.8 4.24

100+5 W and the final peak electron density . ~ 2 x 101!
cm ™3, which corresponds to the experimental discharge
in Ar [21].

Figure 3 shows the EDF as a function of total energy
plotted at different spatial positions within the volume
of the discharge in Ar (a) and He (b). It is seen that to
good accuracy the EDF’s coincide with each other. The
EDF is nearly Maxwellian in the elastic energy range
and drops rapidly in the inelastic energy range due to
inelastic collisions. Both results are in agreement with
the nonlocal approach. The apparent disagreement for
the EDF’s at small and large z is the direct result of the

101 1 é T T T
E "*v-\_ ............... (p=0.5cm,z=6.5cm) E
— 10 | \‘*"’-\ _____ (p=6.0,2=6.5) -
'E 107 E -\\\\ 3
. — — — - (p=8.12=85)
QO r . ~ (=6.0,2=1.5)
T 109 NG 4
() E N Y (p=8.0,z=12.5) B
:“’t L
< 108F
@
107 . X .
0 5 10 15 20
total energy (eV)
11 ¢ T T T
10 E (p=0.5cm,z=8.5cm)
:“ e (p=86.0,2=8.5)
1010 —— |
— E “ S (p=8.1,2=6.5)
T F e ]
E L ~ (p=6.0,2=1.5) 1
L 109k S 3
N F Ny e (p=6.0,2=12.5) B
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107k
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1081 . 1 .
0 10 20 30 40
total energy (eV)
FIG. 3. The time-averaged isotropic part of the EDF fo

in argon (a) and helium (b) as a function of the total energy,
at different locations in the discharge, found from the CS.
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coarse spatial grid used in the simulation. As the spatial
mesh is refined, the electrostatic potential is better rep-
resented and therefore these EDF’s tend to overlap the
other EDF. However, the EDF near the coil does have an
enhanced tail compared to the other EDF’s due to the rf
heating fields.

The EDF’s as functions of kinetic energy at various
times during the rf pericd are shown in Fig. 4 in the bulk
of the Ar discharge (a) and in the vicinity of the coil
(b). It is seen that the EDF is time modulated in the
immediate vicinity of the coil, but not elsewhere.

Figure 5 illustrates the anisotropy of the EDF in
an Ar discharge in the vicinity of the coil caused by
the inductive electric field. It shows contour plots of
logyo F(vy, ¢y) at different times for v, = 0 from Eq. (3)
(a) and CS simulation (b). Away from the coil, the EDF
is nearly independent of ¢,. The field Ey lies along
¢y, = m/2 or 37/2. During the first half cycle, Ey is

Fy(w) (eV™*%cm )

10 . I — L

0 5 10 15 20
kinetic energy (eV)

108 e . :
Ll t=0.0 ]
i . t=01256 T
_____ t=0.250 T
t"'}/\ ......... t=0375 T
£ 107}
O
N r
7. :
L L
3 108¢
& [
L (b)
10° 1 . 1
0 5 10 15 20
Kinetic energy (eV)
FIG. 4. The isotropic part of the EDF Fy found from

the CS in argon as a function of kinetic energy at two spatial
positions for various times during the rf period (a) in the bulk
r = 0.4R,z = L/2, and (b) close to the rf antenna r = 0.4R,
2z =0.96L.
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positive and electrons move towards ¢, = 3w/2. The
phase shift & depends on the electron energy in argon
as is clearly seen from (a) at time ¢ = 0.3757 where the
phase changes its sign with increasing energy.

The total particle lux (integrated over the azimuthal
angle in physical space) is shown in Fig. 6(a) for the Ar
discharge. This flux is dominated by trapped electrons
which represent the vast majority of the ensemble. The
flux virtually vanishes near the walls and exhibits a circu-
latory pattern. The origin of the circulatory flux can be
explained as follows. If the electron collision frequency
with atoms vanishes at low energies in Ar, the slow elec-
trons have virtually no collisions with atoms even at rel-
atively high gas pressures. The inductive field Fy gives
the electrons near the coil (top and center of the plot) a
high azimuthal velocity (in the direction normal to the
page). In a collisionless regime, this causes a substan-
tial centripetal force which pushes the electrons radially
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FIG. 5. Contour plots of log,, F(vL, ¢») in the vicinity of

the coil as functions of mv?% /2 and ¢, for v, = 0 at different
times (a) calculated from Eq. (3) at E¢=2 V/cm and (b) CS
simulations for p = 0.4R, z = 0.96L. Contours are at equally
spaced intervals of log,, F.
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outward. When the electrons eventually do have col-
lisions, which isotropize the EDF, the centripetal force
is reduced. The centripetal force results in an outward
flux of slow electrons in the vicinity of the coil. After
collisions the electrostatic potential pushes the slow elec-
trons radially inward again. For large z (near the top)
this return flux is smaller than the outward flux of parti-
cles created by the coil, but near the bottom the inward
flux is visible. Finally, the flux from the middle of the
chamber at z = L/2 and r = 0 (on the left hand side
of this plot) toward the coil (top and center) is driven
by the density gradient since the maximum density is at
(r=0,z=1L/2).

Despite these fluxes being bigger than the flux of
free electrons [see Fig. 6(b)], the trapped EDF is highly
isotropic everywhere (Fig. 5). The very small anisotropy
of trapped electrons leads to a noticeable flux because
the density of slow electrons exceeds the density of fast
electrons by orders of magnitude. However, free electrons
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FIG. 6. The time-averaged electron fluxes in argon: (a)

total, (b) free electrons. The components of the flux are the
net numbers leaving per second through the corresponding
faces of the cells of the mesh. The length of the vector is
proportional to the flux; the longest vector corresponds to
3.2 x 10*® 57! in (a) and 1.3 x 10*® s™* in (b).
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FIG. 7. The spatial profile of the direct ionization rate in
argon. Contours are fractions of the peak ionization rate of
8.3 x 10" cm™3 s7 1,

are the only electrons responsible for the electron flux to
the walls. The circulatory flux is more pronounced in
argon than in helium, due to the strong dependence of
the electron collision cross section on electron energy in
argon.

Figure 6(b) shows the flux of “free” electrons (electrons
with € > epg). For these free electrons, there is no circu-
lating pattern as found in the total electron flux. Instead,
the flux is seen to come from the source region (see also
Fig. 7) and escape to the walls of the discharge. A similar
behavior of the free-electron flux has been obtained from
the nonlocal approach [11].

The two-dimensional profile of the direct ionization
rate is shown in Fig. 7. The peak of the ionization is
observed off axis. In experiments [9] two peaks in the
light emission have been observed in conditions similar to
these. The origin of the central peak has been explained
in [9,11] taking into account the radial nonuniformity of
the static field. In our calculations the spatial profile of
the static potential was rather flat; thus the contribution
of trapped electrons to ionization is rather uniform. The
off-axis peak is due to free electrons and occurs under
the coil where they are heated most effectively. With
a more radially nonuniform potential profile an on-axis
peak may be obtained.

C. Discussion

The two calculations employed here both appear to
provide an accurate description of electron kinetics in a
low-pressure ICP in rare gases and to agree with each
other in the considered range of discharge conditions.
The extent to which the approximations employed in the
non-local approach are valid, and the circumstances un-
der which they are valid, have been the major focus of the
present paper. The principal physical processes which
govern electron kinetics in ICP in the discharge condi-
tions considered involve the following:

(i) a spatially nonuniform collisional heating of elec-
trons by the inductive field which is localized near the
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coil;

(ii) the trapping of the majority of the electrons in the
discharge volume by the electrostatic potential and the
division of electrons into different groups which exhibit
distinct behaviors;

(iii) the ionization degree being so high that Coulomb
collisions can effectively transfer energy from the rela-
tively energetic electrons, which are effectively heated by
the rf inductive field, to the cooler electrons which cannot
even visit the region where the heating occurs.

The division of electrons into different groups with re-
spect to total energy is a rather common feature of elec-
tron kinetics in low-pressure gas discharges [2]. In the
cathode region of a dc discharge, a division of thermal
electrons into two groups results in a rather complex EDF
[22]. The cathode plasma is characterized by a lower ion-
ization degree than an ICP. The Coulomb collisions are
less efficient here. Cold electrons trapped in the poten-
tial well typically have a Maxwell-Boltzmann EDF with
temperature ~ 0.1 eV. The mean energy of free electrons
is about equal to the excitation threshold energy. Since
the densities of trapped and free electrons in the cathode
plasma differ by orders of magnitude and change with
the coordinates in an entirely different manner, the mean
electron energy is spatially nonuniform [22,23]. Most of
the electrons in the ICP are trapped in the plasma by the
electrostatic field. For these electrons, the nonlocality
condition is equivalent to a limit of high thermal conduc-
tivity. A hydrodynamic description of ICP electrons in
this limit would give an erroneous result of uniform mean
electron energy and uniform excitation (ionization) fre-
quency over the plasma volume.

We have restricted our consideration to a collisional
ICP, when the electron mean free path is much less
than the discharge dimensions. At lower pressures the
nonlocal method must be modified to include “collision-
less” electron heating; the CS can be used essentially
unchanged. The inductive electric field must be supple-
mented with the associated magnetic field and the entire
Lorentz force used in the equation of electron motion
Eq. (A2). The free-flight regime of ICP operation will be
investigated elsewhere.

We have studied electron kinetics in an ICP composed
of rare gases. In molecular gases, electrons mostly dis-
sipate energy by exciting the vibrational and rotational
energy levels of molecules. This case can also be de-
scribed by Eq. (7) but the coefficient § is not calculated
as simply as for elastic losses, but is a function of electron
energy. These losses are usually greater than elastic ones
by one to two orders of magnitude; nevertheless, the cor-
responding coefficient is small (§ ~ 1073 — 10~2). Thus
the approximations employed in the nonlocal approach
can be used in molecular gas plasmas as well but in a
more limited range of discharge conditions. In a molec-
ular gas ICP, the EDF is expected to be independent of
the degree of ionization provided it is less than 107,

IV. CONCLUSIONS

Two accurate kinetic treatments of electrons in two
spatial dimensions were applied to a low-pressure colli-
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sional ICP. Some of the main results of the comparison of
the two approaches for the considered range of discharge
conditions include the following.

(a) The spherically symmetric (isotropic) part of the
EDF, Fpy, is time independent for the vast majority of
electrons. Only a small modulation of the Fj tail with
a frequency 2w was found from the CS simulation in the
immediate vicinity of the coil. This result largely justi-
fies the assumption in the nonlocal approach of a time-
independent EDF.

(b) The nonspherical component of the EDF, F, is
small with the sole exception of the coil vicinity where
F; is modulated with the frequency w and lags behind
the inductive field. Again, the CS simulation agrees with
the nonlocal assumption.

(c) The total electron energy is an appropriate vari-
able for the analysis of the electron kinetics. For trapped
electrons, the EDF’s calculated by the CS and plotted
as functions of total energy coincide at different spatial
positions with good accuracy.

(d) In a rare gas ICP, the EDF shape is affected by
interelectron interactions for an ionization degree as low
as 1078, For a typical ICP ionization degree of 10™% or
greater, the energy transfer in Coulomb collisions results
in a Maxwellian EDF in the elastic energy range. The
electron temperature is spatially uniform and is deter-
mined by the integral balance of electron heating and
cooling. The plasma density obeys the Boltzmann rela-
tion.

(e) The nonlocal approach transforms the problem of
the EDF calculation in an ICP to a form similar to that
in a homogeneous plasma. It makes possible use of the
rich store of computational and experimental data for
homogeneous rf plasmas to analyze the role of the various
collisions in the formation of the EDF in an ICP.

(f) Substantial circulatory current was found in the
CS simulation. The presence of this current within the
plasma is attributed in part to “collisionless” behavior of
the slowest electrons. The heating rate is slightly differ-
ent in the two calculations due to the presence of noncol-
lisional heating in the CS simulation.

In comparing the results of the two methods, one can
see that for the operating parameters studied here the
nonlocal approach works well as long as detailed behavior
of the EDF near the coil is not considered. Furthermore,
as the neutral pressure decreases, the two-term spherical
harmonic expansion used in the nonlocal approach must
be replaced by a more general expression. The “non-
collisional” electron heating may become the dominant
mechanism of heating in the regime with rare collisions.
We believe that the magnetic force may influence the
electron kinetics and the heating rate at low pressures
and must therefore be included in both models.
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APPENDIX

In this appendix, extensions of the convected scheme
(CS) technique in two spatial and three velocity dimen-
sions are discussed which are necessary for modeling elec-
trons in an inductive electric field. We first describe the
coordinate system and the mesh used for electrons in
cylindrical geometry (Sec. 1). Section 2 treats the re-
finements of the “ballistic” and “collisional” propagators.
Section 3 discusses the algorithm of the CS.

1. Coordinate system and mesh for electrons
in cylindrical geometry

The coordinate system used to describe electron mo-
tion in this work is (p, 2,v,,v,, M), which is the same
as in Refs. [6-8]. Here, 2 is the vertical distance from
the chamber bottom, p is the radial distance from the
center of the discharge, v, is the velocity parallel to the
z axis, vy is the speed in the plane perpendicular to z,
and M = psin ¢, is the moment arm or “reduced” an-
gular momentum. Specifically, ¢, is the azimuthal angle
between the velocity v, and p [i.e., ¢, = arccos(p-v)].
Therefore the quantity v; M is the angular momentum
about the z axis per unit mass.

The justification for these variables (p,z,v,,v,, M)
can be found in Ref. [8]. In summary, the velocity vector
is split into v, and v, so that the “ballistic motion” can
be decoupled into two moves (see below). The choice to
use M is partly because it is a conserved quantity dur-
ing the ballistic motion (in the case of zero electric field).
More importantly, however, a mesh in (v,,v4) leads to
unacceptable numerical diffusion. As electrons move ra-
dially outward in p in the absence of an electric field, the
angle ¢, decreases (where ¢, is defined to be zero for
an electron moving purely radially outwards). Electrons
in the smallest ¢, cell at one radius should be placed in
a smaller ¢, cell at the next radius they go to. On a
uniform ¢, mesh this is impossible, unless there is a cell
at ¢, = 0. A cell at ¢, = 0 will then trap electrons at
¢, = 0 if they bounce off the outer radial wall and move
to smaller radii. In either case, electrons are “pumped”
towards or away from ¢, = 0. Numerical diffusion then
becomes a severe problem.

The way to avoid this systematic inaccuracy is to
choose a mesh on which cells from one radius are mapped
exactly onto cells at all other radii (at least when the
electric field is zero). This essentially means using M to
define the mesh. The M mesh has two distinct parts,
one for electrons with negative radial velocities (inward
going) and one with positive radial velocities (outward
going). Figure 8 is an illustration of the mesh in the
(p, M) plane. The halves of the mesh share a single M
cell at the smallest radius which can be reached by par-
ticles with that M. The innermost cell is labeled ag in
Fig. 8, and it includes p values from 0 to p; and M run-
ning from 0 to p; (since Mopmae = p1 5N Pmaz). At the
second radial cell, extending from p; to ps, we have three
M cells, one inward going and one outward going from
M =0 to M = p;, and a third split cell from M = p;
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FIG. 8. Schematic of the (M, p) mesh used in the CS.

to M = py. This continues all the way to the last radial
cell, extending from par—; to par which has 2N — 1 cells
in M.

For an ICP discharge, or for any discharge which has
an azimuthal electric field, the full range of ¢, (from 0
to 2m) must be represented. Therefore, Fig. 8 only rep-
resents half of the mesh, say for electrons with a positive
angular momentum about the z axis. There is an identi-
cal mesh for electrons with a negative angular momentum
about the z axis.

2. The ballistic and collisional propagators

In this section, we first describe the way in which the
collisionless motion (or the ballistic move) of the electrons
is implemented numerically. The collisional motion is
essentially identical to that described in Ref. [8]; however,
two minor changes will be discussed.

In this model, there are two separate motions each in
a space coordinate and the corresponding velocity, which
for conciseness we describe as motion in the spatial coor-
dinates z and p. The first is the motion in the 2z direction
and the second is the motion in the plane perpendicular
to z. The motion in z is described in Refs. [6] and [7].
The motion perpendicular to the z axis is described in
Ref. [8]. However, in Ref. [8], it was assumed that there
was only a radial electric field E,. In an ICP discharge,
there is an azimuthal electric field Ey, which sustains
the discharge. We will now describe the extensions of
this ballistic move to include the effects of the azimuthal
electric field.

As described in Ref. [8], the ballistic move is based
on the conservation of phase space volume (density). A
given initial cell indexed by (¢,7,%,l) has “mean” val-
ues p;, 1, Mg, and 7,; and “boundary” values at
Pi—15 Pis V1 ,j—1, ULl j, Mk—l, Mk, Vz,l—-1, and Ve 1y where
p; = (pi + pi—1)/2, etc., except for M. The particle -
density in a cell is assumed to be independent of the ¢,.
This means that M, = fAd>., Mdp, [Ad,, where A, is
the range of ¢, in the cell.

In Ref. [8], it was shown that the initial cell “swept
out” a phase space volume, during a time step At, given

by
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A g =m(Mp — My_1)o1 (0] ; —od ;1)

X(Uz,l —Uz‘l_l)At, (A].)

where U ; = v ; if there is no electric field. This “swept-
out” phase space is then used to compute where the elec-
trons move in the radial direction.

When a radial and azimuthal electric field is included,
we then use the equation of motion for v, :

b= [iEp(p, 2) (1= M2/p%)"* + Bo(p, 2)M/p .

(A2)

The minus sign is used for inward going electrons and m
is the electron mass. During the computation of Az, v ;
is approximated as

- e —2
V15 =V15 = 5| FEe(p,2)(1 ~ M, /pE)M?

+Eq(p, Z)mk/ﬁi] At. (A3)

The error in this approximation decreases with decreas-
ing mesh size; the error vanishes for an infinitesimal mesh
size. The above equation defines a time average v, dur-
ing At. For an initial cell, the volume of phase space
“swept out” is computed for each radial boundary by us-
ing E, and Ey at each boundary. This allows the initial
phase space volume to expand or contract in the radial
direction.

Once the spatial distribution is found, conservation of
energy is used to update the distribution in v, . Suppose
some of the electrons from the initial cell with mean ra-
dius p; and mean velocity v, ; are distributed to a final
spatial cell with mean radius p,,,. These electrons should,
by conservation of energy, have a moved perpendicular
velocity v/ given by

2e 2 _\?
= (P + 20 2) — (70 2]+ W)

(A4)

where ®(p, z) is the electrostatic potential and W is the
work done by the azimuthal electric field. We calculate
W by the energy theorem

W = —CEQUJ_M/p. (AS)
The computation of W is approximated as
W = —cEp (’U_LM/p) At (A6)

where FEg is the average Fg over the electron trajectory.
If Ey is accelerating the electron, then we find

— e —
W = —eBgAt [ul,jmk - %pEgAt] /5w (AT)
where p is the average p over the electron trajectory.
However, if Eg is decelerating the electrons, then W is
given by
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—Lmo? M2 /52, + [eBo(At — B)
2 1.7 ™m 2mp,,
W = - e - for ,3 < At
—eFgAt[v) ;M — %ﬁEgAt]/ﬁm
for B > At,
(A8)

where 3 = 2mv, jMy/(ep|Ee|). The error in this ap-
proximation decreases with decreasing mesh size also.

Typically v/, [Eq. (A4)] does not correspond exactly to
the mean v, in a cell on the mesh, in which case the elec-
trons are shared between the two neighboring v cells in
such a way that kinetic energy (in the azimuthal plane)
is conserved. If a final radial spatial cell is energetically
forbidden, the electrons retrace their trajectory to the
previous radial cell, reversing the sign of their radial ve-
locity.

Once p and v, distributions are updated, the M dis-
tribution must be updated. The electrons distributed to
a final cell with mean radius p,, and a final speed v/
have a range of final M’, from M’ to M!_. This range
is found from the initial range of M (i.e., Mj_; through
My,) and the average torque over the electron trajectory:

e _—
M = (M,IUL,J- - EpEgAt) o, (A9)

where ¢ is equal to k — 1 or k. From this range of M/, a
range of M cells is found and the electrons are distributed
uniformly in ¢, in these M cells. If the torque equation
cannot be satisfied or the range of M shrinks to zero,
then the electrons retrace their trajectory to the previous
radial cell, reversing the sign of their radial velocity.

If a magnetic field in the z direction is added, the algo-
rithm is slightly adjusted as follows. This component of
the magnetic field, B,, produces a rotation of v, about
the z axis by the angle —Z B, At but does not change the
magnitude of v;. As the phase space volume is swept
out, we check to see if B, (the average B, over the tra-
jectory) has reversed the radial velocity. If so, that radial
cell is declared “forbidden” and the electrons reverse their
radial velocity. Otherwise the final spatial distribution is
found as above. The only difference is that the final M’s
must be adjusted (rotated). A magnetic field in the ra-
dial direction, B,, would mix the components of v, and
v, . As such, this Lorentz force term would be on equal
footing with the Ey term.

Due to the finite cell size of our spatial grid and to-
tal energy conservation in the ballistic move, the very
lowest-energy particles can be artifically “trapped” in
certain cells. Previously we have developed an algorithm
to eliminate this problem by estimating the steady-state
momentum in a cell so that the flux out of a spatial cell
is correct.

For particles with identically zero kinetic energy, the
scheme for correcting the momentum has been further
developed. A particle with zero kinetic energy will be
accelerated by the fields present. As the particle is ac-
celerated, the collision frequency is given by No(at)at,
where a is the acceleration, NV is neutral density, ¢ is the
time, and o is the total cross section. For now we assume



53 MODELING OF NONLOCAL ELECTRON KINETICS IN A LOW-. ..

o(at) = const.
The probability of collision during a time ¢ is given by

P =1 —exp(—Noat?) (A10)
which can be inverted to give t(P):
t(P) = [~In(1 — P)/(Noa)]"/>. (A11)

The average t, (t), before a collision (i.e., the average over
the above distribution from P=0 to 1) is given by

(t) = v/7/(Noa)/2.

For each spatial cell on the mesh, electrostatic fields are
specified and the acceleration a can be computed and
therefore (t) for each spatial cell can be found.

To correct for the flux (or momentum) of the initially
zero energy particles, the average velocity can be taken
to be

(A12)

(v) = 0.5a(t) (A13)
and thus a particle will move a distance
dr = (v)At = 0.5a(t) At (A14)

where At is the time step of the simulation.

Since o, in general, is not constant, one can find an
average o given that the particle started at v=0 and fin-
ished with v = a(t). A simple iterative technique, if
needed, can be used to find a better estimate of ().

Before we end this section, we mention two minor re-
visions to the collisional propagators. The first concerns
electron-electron Coulomb collisions and the second is for
electron-neutral collisions.

Reference [7] described how electron-electron Coulomb
collisions were implemented numerically. Essentially, the
EDF is fitted to a finite number of Maxwellian distribu-
tions and then analytic expressions give the energy trans-
fer rate between pairs of Maxwellian distribution func-
tions. An algorithm was described which conserved par-
ticle number and energy exactly on the numerical mesh.
We simply stress that for the scheme to work properly
the fitted distributions must accurately represent the low-
energy part of the EDF.

The other minor revision concerns electron-neutral col-
lisions. As described in Ref. [8], the fraction of electrons
scattering during a time step is given by

2 Nat,

(A15)

Nscatt/Ncell = Ok (Ez,i + E_zl_,j + 3kBTg/M)

where N is the number of electrons in the phase space
cell, o, is the cross section for the kth collision, Ty and M
are the neutral temperature and mass, respectively, kp is
Boltzmann’s constant, and N is the neutral density. The
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final velocity of these scattered electrons is

1/2
%ﬁ) (A16)

1 | =2 =2
v = (”z,i Uit

where AT, is the change in energy due to collision k.
Isotropic redistribution is accomplished by putting a frac-
tion (v, ,p — v, p—1)/v" of the scattered electrons into the
pth cell for all |v, ,| < v'. The corresponding v, cell(s)
are at

vy =[(v)? — 2 )2

(A17)

Usually the absence of a v cell at this precise v'J_ requires
splitting the electrons between two adjacent cells in a
fashion which conserves energy.

The revision is concerned with Eq. (A17). Instead, we
find two v, ’s by

! =2 11/2
V) + = [(,v/)Z - vz,q] / (A]‘S)
where q is equal to p — 1 or p. These vl’i’s give a range
of v cells where the scattered electrons are redistributed
in such a way that the correct fraction goes to the v, ,
cell and energy is conserved.

3. Algorithm of the CS in an ICP

In this section, we describe the algorithm of the CS for
modeling electrons in an ICP discharge. The algorithm
typically consists of three modules: ballistic move in the
“z direction,” ballistic move in the “direction perpen-
dicular to z,” and collisions. Typically, an electrostatic
potential ®(p, z) and inductive field Eg(p, z,t) are input
to the CS. During a typical time step, first the ballistic
moves are done (the order of calling is alternated between
successive time steps). Then, from the atomic cross sec-
tions, a collision time is found. If a preset small fraction
(typically 1/5) of the collision time has elapsed since the
last time the collision routine was called, the electron-
neutral collisions are executed. Then, using a similar
technique, it is decided if electron-electron Coulomb col-
lisions should be called (see Ref. [8]). The azimuthal
electric field is then advanced in time (including any ca-
pacitive fields, if present) and the time step is repeated.

The typical time step in the ICP simulation is ~ 1/50
of the rf period. This rather long time step is possi-
ble since this is not a self-consistent calculation (that is,
Poisson’s equation is not solved), though this time step
is small enough to resolve the sinusoidal fields. In the
simulations reported here, the electrons are not affected
by the inductive magnetic fields. While these effects may
become significant in an ICP, at the pressures and fre-
quencies studied here they are not believed to strongly
affect the electron kinetics.
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